Fuel Challenges for Modern (SI) Vehicles

Future Powertrains Conference Feb 28th - Mar 1st

Roger Cracknell Shell Global Solutions (UK)
DEFINITIONS & CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations” respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s Form 20-F for the year ended December 31, 2017 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation 1 March 2018 . Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
ICE DOWNSIZING AND ELECTRIFICATION

- Downsized boosted engines have significant potential for efficiency improvement.
 - Reduced throttling losses
 - Operation at higher average loads - lower friction
 - Higher torque at lower engine speed – downspeeding
 - Charge cooling benefits from DI

- Hybridisation (especially series hybrids) limits the speed load range so that the engine is more likely to operate in its most efficient region.

- Presentation will focus on fuel requirements for advanced SI Engines
FUEL OCTANE AND ENGINE KNOCK (1)

- Flame spreads across the combustion space
- Compressed and hot gasses in front of flame front can auto-ignite
- Knock Signal to EMS (Retard Ignition)
- Knock Sensor
FUEL OCTANE AND ENGINE KNOCK (2)

- Lower octane fuel makes the engine more prone to knock.

- For higher RON fuels the spark timing achieved is closer to optimum (MBT) with the highest torque.

- KLSA is the most advanced spark timing achievable without knock.

OCTANE AND REAL WORLD DRIVING (1)

- Measuring spark retard in vehicles typical of the European Market

Test fleet of 20 vehicles (representative of European markets in terms of coverage and vehicle technology)

50% of vehicles showed a power benefit (RON97 vs RON95)

95% of vehicles showed a power benefit (RON99 vs RON95)

MAXIMUM EFFICIENCY INCREASES WITH CR, BUT HIGH LOAD/LOW SPEED OPERATION RESTRICTED BY KNOCK

- Boosted single cylinder engine (up to 3 bar boost pressure)
- Fuel: RON = 92, S=10

\[\eta_{\text{Max}} = 37.2\% \]

\[\eta_{\text{Max}} = 37.8\% \]

\[\eta_{\text{Max}} = 38.9\% \]

DOWNsIZED BOOSTED ENGINES OPERATE “BEYOND RON”

Extrapolate RON and MON via octane index (OI):

\[OI = K \times MON + (1-K) \times RON \]

[OI = RON – K × S]

(Kalghatgi)

Cracknell et al MTZ worldwide June 2015, Volume 76, Issue 7-8, pp 4-7
The K-Value theory (Kalghatgi) can extrapolate RON & MON to apply to modern technology

Method: extrapolate RON and MON via octane index:

\[OI = K \times MON + (1-K) \times RON \]
\[OI = RON - K \times S \]

- The higher the OI, the more auto-ignition resistant the fuel (Sensitivity \(S = RON - MON \))

- **K-value**: engine and condition dependent scaling factor influenced by T, P history of in-cylinder end-gas

- Implications:
 - For \(K = 0 \); \(OI = RON \)
 - For \(K = 1 \); \(OI = MON \).
 - For \(K < 0 \); low MON fuels preferred (high sensitivity).

SINGLE CYLINDER ENGINE RESULTS (1)

SINGLE CYLINDER ENGINE RESULTS (1)

CLEANLINESS
INJECTOR FOULING: SPRAY CHARACTERISTICS AND PARTICULATE EMISSIONS

(University of Birmingham Collaboration)

Fouled injectors give:
• more distinct spray core
• larger droplets,
• more particulates

Higher injection pressure reduces PN

C Jiang et al; Applied Energy 203, 2017, 390-402
INJECTOR FOULING: SPRAY CHARACTERISTICS AND PARTICULATE EMISSIONS (IAV/ Imperial College Collaboration)

- Deposit control additive can mitigate injector fouling and PN drift

IVD BUILD-UP LEADS TO “SLUGGISH COMBUSTION”

- Uses Mercedes-Benz M111: CEC F-20-98
- Longer spark \(\Rightarrow\) CA50 observed during IVD build-up.
- Consistent with changes observed in NOx and Exhaust Gas Temperature.
- Changes in Air Flow due to IVDs measured.

IVDS CAN ACT AS A SPONGE TO SOAK UP FUEL
(University of Edinburgh Collaboration)

Valve deposits act as sponge

3000 x magnification

- Power loss
- Slow acceleration
- Poor drivability
- Poor cold start
- Increased emissions

The efficiency of today’s SI vehicles can be adversely impacted by knock in real world driving.

Downsizing, boosting, increasing CR and hybridisation all provide possible routes to increasing SI engine efficiency.

Increased CR leads to higher efficiency in some parts of the speed/load map but needs higher octane quality at low speed/high load.

Increased sensitivity (RON-MON) as well as increased RON can be beneficial in increasing efficiency.
SUMMARY - CLEANLINESS

- Injector deposits in DISI engines can impair the quality of the spray, leading to higher emissions and impaired combustion.

- Intake valve deposits in industry standard M111 engine shown to give “sluggish combustion” which can be linked to changes in air flow.

- Intake valve deposits have a well developed pore structure which can soak up fuel (in PFI engines).

- Deposit control additives can be shown to mitigate the adverse impact of fouling.
Acknowledgements

- Andreas Glawar
- Sandro Gail
- Vinod Natarajan
- Arjun Prakash
- Allen Aradi
- Chris Conifer
- Shuhui Yow
- Jens Krueger-Venus
- Chongming Wang