Connected Energy Based Powertrain Control - A Cross Domain Approach
Marcus Boumans, Dr. Uta C. Fischer
Diesel Gasoline Systems – Electronic Controls
Global Drivers for CO₂ Saving Features

- Legislative
 - Driver: politics (energy, foreign, city, …)
- Fleet consumption
- Taxes, Limitations...
- Fuel cost
- Customer
- Image
- Lobby

- Increasing number of technologies / products / components (Variety)
 - ICE Optimization
 - Electrification (Hybrid/EV, …)
 - Fuel Cell
 - Alternatives (CNG, Bio gas, H₂, …)

CO₂ – Cost – Safety requirements lead to an increase of Cross Domain functions
Connected Domains – Challenge and Opportunity
Driven by CO₂: Develop a vehicle wide Energy Management Powertrain Control to

- Minimize CO₂-emissions by SW-Functions only (“Cross Domain”)
- Master Variance and Complexity of cross domain SW („cost“ €)
Connected Energy-based Powertrain Control

Proceeding

Search Fields
- Relevant Ideas
- Theoretical potential
- PoC in simulation
- Car Prototype

Potential Analysis
- Connected Energy-based Powertrain Control

Concept Study
- Diesel Gasoline Systems
- DGS - EC/PJ - CNS | 11/02/2016 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Concept Validation
- BOSCH

Business Unit

A powerful CO₂-minimization Cross Domain approach, vehicle topology & components are degrees of freedom

EPC: Energy Management Powertrain Control

PoC: Proof of concept

Diagram:
- Energy Management
 - Mechanical Energy
 - Thermal Energy
 - Electrical Energy
- Driving
 - Temperature
 - Adjustment time
 - Air quality
 - Humidity
- Cabin tempering
 - Consumer 1: on/off/level
 - Consumer 2: on/off/level
- Safety/Comfort
- Powertrain
 - ICE on/off
 - Clutch open/closed
 - Gear ratio
 - Torque e-machine
- Heat/Cool System
 - EL water pump on/off/level
 - Valves on/off/level
 - Level climate compressor
- 12V-Supply
 - Power/torque Generator
 - Power DC/DC

Table:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Result (estimated CO₂-Savings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV CO₂ saving potential DOF: torque split</td>
<td>20 - 25%</td>
</tr>
<tr>
<td>Assisted driving CO₂ potential, DOF: velocity</td>
<td>up to 10%</td>
</tr>
<tr>
<td>Comparison Blended/Depleting-Sustaining Mode PHEV</td>
<td>5 - 10% (Blended-Mode)</td>
</tr>
<tr>
<td>Potential Predictive PHEV strategy</td>
<td>8 - 11%</td>
</tr>
<tr>
<td>HEV CO₂ optimal gear selection, DOF: gear</td>
<td>up to 6%</td>
</tr>
<tr>
<td>CO₂ saving potential thermal management measures</td>
<td>1 - 5%</td>
</tr>
<tr>
<td>Prediction CO₂ saving potential min. 4%, DOF: route selection</td>
<td>up to 4%</td>
</tr>
<tr>
<td>Potential of shifting auxiliaries loads</td>
<td>< 1%</td>
</tr>
<tr>
<td>Potential Considering cold engine in ECMS (optimal torque split) (HEV)</td>
<td>< 1%</td>
</tr>
</tbody>
</table>

Gasoline
- Parallel P2 Strong HEV

Focus: Optimized Powertrain Control
Focus on cross domain optimization using all vehicle DoF AND predictive / surround data for different sensor and powertrain topologies (Diesel, Gasoline) - modular extendible feature kit available
Connected Energy-based Powertrain Control

Prediction “Enabler” Framework

Sensor Data

Predictive Enabler Structure

Predictive Functions

DATA RECONSTRUCTION

DATA FUSION

SURROUND MODEL

SITUATION ANALYSIS

SELF-LEARNING PREDICTION MODEL

Long Horizon

Medium Horizon

Short Horizon

Prediction “Enabler” Framework: A scalable approach w.r.t. available sensor and cloud data

Diesel Gasoline Systems

ADAS: Advanced Driver Assistance System
ADASIS: ADAS Interface Specification

DGS-EC/PJ-CNS | 11/02/2016 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Cross Domain Feature Development and Verification

Cross Domain Simulation Environment

Development & Validation: Roller Dyno including Navi

Connected Energy-based Powertrain Control

Gasoline Parallel P2 Strong HEV
Focus: Optimized Thermal Management

Gasoline Parallel P2 Strong HEV
Focus: Optimized Powertrain Control

Diesel Axle Split PlugIn HEV
Optimized Powertrain Control w.r.t. CO₂ / NOx emissions

Cross Domain Function Development and Concept Proof in simulation & Concept Car considering different powertrain topologies, optimized component layouts, sensor/actor variance

Diesel Gasoline Systems

DGS-EC/PJ-CNS | 11/02/2016 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Connected Energy-based Powertrain Control

Example: Map-based ecoACC Cross Domain Verification in Simulation

Simulation scenario:
- No traffic ahead
- Vary driver & optimizer
- CO₂ saving: ~10% (depends on traffic)

Simulation scenario:
- Varying traffic
- Different road types
- CO₂ saving: 2% - 5% (depends on traffic)

Reproducible CO₂ Potential determination for Map-based ecoACC possible
Connected Energy-based Powertrain Control

Master Variance and Complexity of Cross Domain Functions

Cross Domain Functions
- Human Driver
- Cruise Control
- Eco. Driving
- Energy bas. PT Control
- ADAS
- Parking Assist
- Autom. Driving

“Vehicle Motion Control”

Actuators
- Trans-mission
- IC Engine
- E-Drive
- Steering
- Brake

Drivers ‘Next Generation’ (E/E and SW) Architecture design

Powertrain Electrification
- Automated driving
- Energy management
- Connectivity

SW Updates FOTA
High-speed-Communication
Safety & Security

Technical drivers
- Introduction of complex cross domain or cloud-based functions
- Emission reduction, Powertrain Electrification and Automated driving and Connectivity
- Variant management

Strategic drivers
- Fast innovation cycles
- Integration of SW from different sources
- Scalable, modular platform concepts
- Corporate affairs, Web-based services
Connected Energy-based Powertrain Control

Our advanced E/E Architecture Design Approach

1. **Requirements & Use Cases**
 - Definition of relevant use-cases and of the functional requirements for the electric and electronic systems

2. **Functional Network**
 - Derive main functional cause-effect relationships and define functional networking with optimized functional cluster

3. **Technology & Components**
 - Transfer functional clusters on physical E/E components and domains. Consider technological and strategic criteria, such as weight, cost, flexibility, innovation cycle, safety and security requirements, ..

4. **Vehicle Network**

Reference architecture – Todays solutions

Goal: get ready for the future with sustainable E/E- and SW Architecture
Connected Energy-based Powertrain Control

Degree Of Freedom potential / benefit analysis for vehicles
- Selection of systems under investigation
- Theoretical potential analysis → most promising DoF

Concept Development e.g. Energy Management in Simulation
- System optimization w.r.t. (energy) features and components
- E/E-Architecture, Hybrid operation strategy / predictive functions

Electronic Control Units
- Electronic engine control unit powertrain
- Vehicle Control Unit VCU, Rapid Prototyping Hardware

Setup Concept Car / Demonstrators
- Demo vehicle systems integration & test, test instrumentation
- function prototypes, analysis and documentation of CO₂ benefit(s)

Calibration services electrified powertrain
- Calibration of work packages, Real Drive Roller Test Bench
- Test trip support + system readiness (“Systembereitstellung”)

Provide Connected Cross Domain Development & Services – internally and for our customers
Thank you very much for your attention!