The Dearman Engine in a Future Powertrain

Nick Owen
Chief Technology Officer, Dearman

Future Powertrain Conference, February 2015
Pressure on environmental performance will not relent – cost-effective solutions are needed

Batteries and fuel cells provide zero emissions at point of use – but...

- Capital cost high – payback can exist but it may be long, and risk-averse markets do not welcome CapEx
- Life-cycle credentials can be diminished by “exotic” materials
- Batteries take time to recharge, fuel cells need a Hydrogen infrastructure

The Dearman Engine is an efficient Rankine-cycle expander powered by waste heat and liquid Nitrogen (LiN) or air (LiAir)

- Simple – made from common, recyclable metals and plastics
- Cheap – cost similar to ICE
- Existing infrastructure – LiN is a commonly used industrial gas

Can the Dearman Engine compete in a vehicle powertrain?
The Dearman Engine

Unpackaging Power and Cold

Process – Operates by boiling liquid air or nitrogen to produce high pressure gas that can be used to do work. **Power + cooling**

Inventive Step Heat transfer inside the cylinder through direct contact heat exchange with a heat exchange fluid – **patent granted**

- Rapid expansion
- High pressurisation rates
- Near isothermal expansion
- Non combustive

Return Stroke
Warm heat exchange fluid (HEF) enters the cylinder.

Top Dead Centre
Air injected - comes into contact with the HEF causes rapid temperature rise.

Power Stroke
The air expands pushing the piston down. Direct contact heat transfer continues allowing near isothermal expansion.

Bottom Dead Centre
The exhaust mixture leaves the cylinder. The gas is returned to the atmosphere and the HEF is re-heated and re-used.

Theoretical maximum specific exergy available from LiN is ~214Wh/kg. Liquefaction requires ~400Wh/kg but is performed using offpeak energy.

Copyright Dearman Engine Company
FPC2015
Benefits of the Dearman Engine

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Made from simple materials in well-established processes</td>
<td>• Low capital cost</td>
</tr>
<tr>
<td>• Can use waste heat to boost efficiency, even at low temperatures</td>
<td>• Fits established ICE manufacturing base</td>
</tr>
<tr>
<td>• Fuel non-combustible, exhaust cool and clean</td>
<td>• Potential for plastics, additive manufacture</td>
</tr>
<tr>
<td>• Liquid air or N₂ widely produced and available</td>
<td>• Low life cycle impacts</td>
</tr>
<tr>
<td></td>
<td>• Waste heat (i.e. inefficiency) is a problem for engines, and fuel cells</td>
</tr>
<tr>
<td></td>
<td>• Works alongside other technologies rather than seeking to replace them</td>
</tr>
<tr>
<td></td>
<td>• Synergies with cooling applications</td>
</tr>
<tr>
<td></td>
<td>• Indoor and underground use possible</td>
</tr>
<tr>
<td></td>
<td>• Low heat signature</td>
</tr>
<tr>
<td></td>
<td>• Modest infrastructure requirement</td>
</tr>
<tr>
<td></td>
<td>• Opportunity to integrate at system level with renewable energy to achieve zero CO₂</td>
</tr>
</tbody>
</table>
A simple, first generation engine has proved the technology in the lab and refrigeration

- Single cylinder prototype engines running since early 2014:
 - Total run time >300hrs
 - One engine ~170 hrs
 - Polytropic Index of 1.15 (vs Isothermal 1.0 & Adiabatic 1.4) indicates HEF working
- Two further units now in service
 - Refrigeration mule – IDP8 Cool-E project with MIRA, Air Products & Loughborough Uni, running Feb 2015
 - Tribology research at University of Birmingham

- **Learning from this work is informing the design of an improved second generation for refrigeration field trials**
Refrigeration is a natural application – uses synergy with a conventional vapour cycle

- Dearman Engine delivers chilling via LiN vapourisation
- Power operates generator for fans & defrosting – but surplus power drives a small vapour-cycle ‘fridge
- Heat from condenser harvested to warm the HEF – good synergy

Predicted performance (2nd generation)
>140Wh chilling per kg LiN in a frozen TRU application – payback vs competition, zero emissions
Required engine efficiency depends on cold-to-power ratio of its use

<table>
<thead>
<tr>
<th>Application</th>
<th>TRU for HGV</th>
<th>Cold + Power APU</th>
<th>WHR + AC for Bus</th>
<th>WHR no AC for Bus</th>
<th>Small vehicle power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine LiN consumption for robust return, Wh/kg</td>
<td>~30</td>
<td>40-60</td>
<td>>60</td>
<td>~100</td>
<td>>100</td>
</tr>
</tbody>
</table>

- Pure Cold
- Cold with power surplus
- Power with Cold surplus
- Pure power as assist
- Pure power as prime mover

- A significant step in efficiency is required to make the technology robustly attractive in applications where power, not cold, is the dominant requirement.
- However, this step does not require any laws of thermodynamics to be broken!
How to improve efficiency – many options, route chosen is low risk, has precedent

Options for improved efficiency

• **Improved HEF heat transfer** – shown by thermodynamic analysis to offer significant theoretical potential, but realistic limits unknown

• **Reduced friction and parasitics** – identified early in our development, but “low hanging fruit” already addressed

• **Shorter inlet valve opening** – to improve expansion ratio; challenging, as we were already using valve periods down to 25° crank

• **Multiple expansion stages** – preferred route
 • Proven in steam cycles, benefit could be quantified
 • Allows working pressure increase from ~40bar to 100bar
 • Re-heat possible to complement the action of HEF
 • Compatible with existing piston / poppet-valve architecture
A concept has been developed in simulation – hardware realisation in 2015

Concept study approach
• Validated 1-d model, embracing:
 • Gas dynamics and valve-port efficiencies
 • In cylinder thermodynamics
 • Friction and parasitic work (LiN & HEF pumping)
 • Sealing & leakage
 • Torque pulses
• Parametric studies
 • Engine size and speed
 • Cylinder count and bore size
 • Valve timing – IVC, EVO

High Efficiency Engine
• 4.5l, 40kW@1000rev/min
• 64Wh/kg LiN net of ancillaries
First implementation is a “heat hybrid” system, assisting the ICE in a bus

Operating principle
- DE harvests ICE heat, assists it
- ICE is downsized (e.g. 6 to 4cyl), and operates closer to eye of BSFC map, less transiently
- DE is used in short bursts, e.g. launch and acceleration; also possible to shut down ICE and provide low power levels by DE
- Energy stored in coolant thermal inertia

CE-POWER project
- InnovateUK project - partnership with MIRA, Air Products, CenEx, TRL, Productiv & MTC
- Technology & manufacturing advancement – demo bus in 2016
- Aiming to demonstrate payback in 3-5 years in UK; better in hot climates
Dearman Engine is an attractive device for using LiN or LiAir as a zero-emission energy vector

- The Dearman Engine is establishing itself as an attractive device for providing **cold and power**
 - A high efficiency Dearman Engine concept demonstrates that its use can be extended into **power-only applications**
- The technology is **complementary to the ICE** (as it uses its waste heat and allows it to be right-sized)
 - The same complementarity applies to **fuel cells** (which reject more heat than ICEs), and even **battery-electric** systems (with a small, Dearman APU)
- Similar levels of efficiency also allow use in **small urban ZEVS**
- The **energy chain** (air liquefaction and separation) is highly complementary with future energy trends
 - Rising renewables – **demand-side management**
 - LNG import – use of “**waste cold**” from re-gasification