Hybridisation for Performance and Economy

Dave Greenwood
Head of Hybrid and Electric Systems
Ricardo UK Ltd.

Future Powertrain Conference
19 February 2014
Driven by regulation and customer demand, the automotive industry continues to introduce CO2 reducing technologies.

<table>
<thead>
<tr>
<th>EU Fleet Average CO₂ Targets (g/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>TBD</td>
</tr>
</tbody>
</table>

EU Fleet Average CO₂ Targets

- **2000**: 130 g/km
- **2010**: 95 g/km
- **2020**: TBD

Charging Infrastructure

- **Full Hybrid**
 - Demonstrators
- **Plug-In Hybrid**
 - Energy Storage Breakthrough
- **Mass Market EV Technology**
 - Fuel Cell Vehicle
 - Fuel Cell & H₂ Supply/Storage Breakthrough
- **Niche EVs**
 - Demonstrators
- **H₂ Infrastructure**
 - Fuel Cell & H₂ Supply/Storage Breakthrough

IC Engine and Transmission innovations (gasoline/diesel/gas/renewables/H₂)

Vehicle Weight and Drag Reduction

Source: An Independent Report on the Future of the Automotive Industry in the UK – New Automotive Innovation & Growth Team (NAIGT)
The most cost effective technologies are deployed first – across entire model ranges where possible

CO₂ cost/benefit for powertrain technologies – EU medium passenger car

- Gasoline
- Diesel
- Mild Hybrids
- Full Hybrids
- Electric Vehicles

% Improvement in NEDC CO₂ relative to Euro 4 Gasoline Engine

Percentage Cost Increase Relative to Euro 4 Gasoline Engine
As a result, fleet average CO2 emissions have reduced significantly since 2006.

Source: ICCT; European Vehicle Market Statistics Pocketbook 2012
There are four key functions of a hybrid powertrain that can contribute to system efficiency improvements:

1. **Engine Downsizing and Load Management**
 - Electric machine provides torque assist to smaller engine
 - Electricity generation used to increase load and store surplus energy for later use
 - Engine stop at idle, coasting, and EV mode

2. **Regenerative Braking**
 - Uses e-machine as generator during braking events
 - Converts vehicle kinetic energy to re-usable electricity instead of heat (to capacity of battery and e-machine)
 - Energy used to power ancillaries and provide driving torque to vehicle

3. **Reduced Ancillary Loads**
 - Electrification of ancillaries like pumps, fans, A/C compressors and PAS allows operation independent of engine speed
 - High voltage systems are more efficient
 - Ancillaries can be downsized and run at most efficient operating point

4. **Zero Emissions Drive Mode**
 - Energy stored in battery can be used to drive vehicle
 - This can be from fuel energy (charge sustaining hybrid) or charged from electricity network (Plug-In-Vehicle)
 - Allows low noise, zero tailpipe emissions operation
 - Provides useful outlet for electrical energy generated

Source: Engine Downsizing and Load Management - Electric machine provides torque assist to smaller engine - Electricity generation used to increase load and store surplus energy for later use - Engine stop at idle, coasting, and EV mode

Regenerative Braking - Uses e-machine as generator during braking events - Converts vehicle kinetic energy to re-usable electricity instead of heat (to capacity of battery and e-machine) - Energy used to power ancillaries and provide driving torque to vehicle

Reduced Ancillary Loads - Electrification of ancillaries like pumps, fans, A/C compressors and PAS allows operation independent of engine speed - High voltage systems are more efficient - Ancillaries can be downsized and run at most efficient operating point

Zero Emissions Drive Mode - Energy stored in battery can be used to drive vehicle - This can be from fuel energy (charge sustaining hybrid) or charged from electricity network (Plug-In-Vehicle) - Allows low noise, zero tailpipe emissions operation - Provides useful outlet for electrical energy generated
HEVs already feature heavily in Premium sector product lines

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Production HEV & EV Models</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW</td>
<td>ActiveHybrid 7 – 342kW V8 gasoline, 15kW P1</td>
<td>Continue to pursue Efficient Dynamics</td>
</tr>
<tr>
<td></td>
<td>ActiveHybrid X6 – 300kW V8, 2-mode (cancelled)</td>
<td>Performance hybrids</td>
</tr>
<tr>
<td></td>
<td>ActiveHybrid 5 – 225kW I-6 gasoline, 40kW P2</td>
<td>Investigating 48V system (2015 launch?)</td>
</tr>
<tr>
<td></td>
<td>ActiveHybrid 3 – 225kW I-6 gasoline, 40kW P2</td>
<td>EV experiments with Mini EV, followed by major investment in “i” brand</td>
</tr>
<tr>
<td></td>
<td>i3 EV / REEV – 125kW motor, 22kWh battery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i8 PHEV – 170kW I-3, 10kW BSG, 96kW e-axle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continue to pursue Efficient Dynamics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance hybrids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investigating 48V system (2015 launch?)</td>
<td></td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>S400 Hybrid – 205kW V6 gasoline, 15kW P1</td>
<td>Hybrids pitched for good fuel-economy</td>
</tr>
<tr>
<td></td>
<td>E300 BlueTEC Hybrid – 150kW I-4 diesel, 20kW P2</td>
<td>First diesel-hybrid premium car (E300)</td>
</tr>
<tr>
<td></td>
<td>SS00 Plug-in Hybrid – 240kW V6 gasoline, 80kW P2</td>
<td>First PHEV premium car (SS00, 2014)</td>
</tr>
<tr>
<td></td>
<td>Smart ED (2009) – 30kW motor, 13.2 kWh Li-ion</td>
<td>Modular P2 hybrid architecture</td>
</tr>
<tr>
<td></td>
<td>Smart ED (2013) – 55kW motor, 17.6 kWh Li-Ion</td>
<td>Small-volume EV experiments with Smart</td>
</tr>
<tr>
<td></td>
<td>SLS Electric – 552 kW 4WD motors, 60 kWh Li-ion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RWD/AWD hybrids all use 2.0L I-4 (Audi) or 3.0L V6 (Porsche) + Automatic gearbox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FWD hybrids all use 1.4L I-4 + DSG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple e-tron concepts (A1, A3, R8) with REEV, series-parallel, EV architectures, but production solutions more conservative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range Rover hybrid – 250kW V6 diesel, 35kW P2</td>
<td>SUV product hybridisation first</td>
</tr>
<tr>
<td></td>
<td>Initially adopt transmission supplier tech (ZF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lexus CT200h – 73kW I-4, 60kW HSD</td>
<td>Powersplit transmission, high motor power</td>
</tr>
<tr>
<td></td>
<td>Lexus IS300h – 130kW I-4, 105kW HSD</td>
<td>Unique engine derivatives (Atkinson)</td>
</tr>
<tr>
<td></td>
<td>Lexus GS450h – 215kW V6, 147kW HSD</td>
<td>EV performance limited by current battery technology, but compatible with PHEV</td>
</tr>
<tr>
<td></td>
<td>Lexus RX450h – 183kW V6, 123kW HSD, 50kW ERAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lexus LS600h – 290kW V8, 165kW HSD</td>
<td></td>
</tr>
</tbody>
</table>
The hybrid architectures in the premium sector are split into several different types, with P2 (European) and Powersplit (US/Japan) dominant.

<table>
<thead>
<tr>
<th>Manufacturers</th>
<th>BMW</th>
<th>Mercedes</th>
<th>Audi</th>
<th>Volkswagen</th>
<th>Land Rover</th>
<th>Lexus</th>
<th>Toyota</th>
<th>Ford</th>
</tr>
</thead>
</table>

Schematic

Transmission
- **P2**
 - Single electric motor ~ 40kW
 - Multi-speed Automatic (or DCT)
- **Powersplit**
 - 2 electric motors ~ 75+150kW
 - Powersplit (eCVT)

Power Electronics
- **P2**
 - Single inverter ~ 40kW
 - One HV-LV DC-DC Converter
- **Powersplit**
 - 2 inverters ~ 75+150kW
 - One HV DC-DC converter ~ 40kW
 - One HV-LV DC-DC Converter

PHEV-ability
- **P2**
 - Requires higher motor & inverter power
- **Powersplit**
 - No change to motor & inverters required

Why?
- **P2**
 - Gasoline and diesel compatible
 - Maximise commonality to non-hybrid
 - Minimise motor + PE cost
 - Compatible with high GVW and GTW
- **Powersplit**
 - Stepless transmission with low complexity
 - Optimise engine & transmission together
 - Maximise powertrain electrification
And as hybrid system power densities improve, they are being used as much for performance as economy - the McLaren P1™ is an excellent example.
But lower cost mild hybrid systems at 12 to 48V are becoming cost effective for wider deployment

<table>
<thead>
<tr>
<th>Engine Stop / Start</th>
<th>3-4% CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic micro-hybridisation (12-24V)</td>
<td>4-10% CO₂</td>
</tr>
<tr>
<td>48V micro/mild hybrid</td>
<td>10-15% CO₂</td>
</tr>
<tr>
<td>48V Ancillaries</td>
<td>15-20% CO₂</td>
</tr>
</tbody>
</table>

- Eliminates idle fuel consumption and noise
- Requires fast, smooth restart for launch
- May require support for transmission, PAS etc during idle stop

- 4-6 kW allows for more powerful ancillaries (PAS, fans)
- Allows for limited assist and some regeneration
- May allow use of GSI for NEDC certification

- 6-12kW allows greater regeneration and assist
- Improved efficiency of electrical generation
- Better start extends DFCO and engine stop
- Some (limited) engine downsizing possible

- Larger energy store allows high current consumers (cooling fans, blowers, AC compressor, PTC heaters, coolant and oil pumps) lighter, more powerful and more efficient.

Source: Ricardo analysis

Energy Storage

- Lead Acid (AGM)
- Advanced Lead Acid (Bipolar, Spiral wound) or + Supercapacitor
- NiMH ?
- Li-Ion
And with modest machine power and torque, the effect on low speed performance can allow engine downsizing.

Torque augmentation enables downsizing and / or enhanced performance.

Transient torque curves measured on chassis dynamometer during full-load in-gear acceleration with BSG boost torque on and off.

In gear 1000-2500rpm acceleration benefit for an 8kW nominal 48V BSG system in a downsized C segment vehicle.

Source: Ricardo analysis.
Ricardo Hyboost takes the concept further – using electric supercharging to allow up to 50% downsizing

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>2009 Ford Focus 2.0L Duratec</th>
<th>2011 Ford Focus 1.6L EcoBoost</th>
<th>2011 Ford Focus 1.0L HyBoost P/T</th>
<th>2010 Toyota Prius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power [PS(kW)]</td>
<td>145 (107) @ 6000 rpm</td>
<td>150 (110) @ 5700 rpm</td>
<td>143 (105) @ 5500 rpm</td>
<td>99 (73) @ 5200 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hybrid system net power = 136 (100) @ 5200 rpm</td>
<td></td>
</tr>
<tr>
<td>Peak torque [Nm]</td>
<td>185 @ 4000 rpm</td>
<td>240 @ 1600 rpm (o/b)</td>
<td>240 @ 3500 rpm</td>
<td>142 Nm</td>
</tr>
<tr>
<td>0 – 62 mph*** [s]</td>
<td>9.2</td>
<td>8.6</td>
<td>9.2</td>
<td>10.4 sec</td>
</tr>
<tr>
<td>31 – 62 mph** [s]</td>
<td>11.9</td>
<td>8.6</td>
<td>11.2</td>
<td>TBC</td>
</tr>
<tr>
<td>Max. speed [mph]</td>
<td>128 mph</td>
<td>130 mph</td>
<td>128 mph</td>
<td>112 mph</td>
</tr>
<tr>
<td>Cycle CO₂ reduction</td>
<td>Baseline (0%)</td>
<td>18%</td>
<td>41 – 47%</td>
<td>47%</td>
</tr>
</tbody>
</table>
2014 Formula One extends this concept further and includes unlimited exhaust heat recovery

MGUK – Motor Generator Unit Kinetic
- Connected to wheels, recovers braking energy and provides torque

MGUH – Motor Generator Unit Heat
- Connected to turbo-shaft, recovers waste heat and provides amps

1.6L V6 DI, Turbocharged engine

MGUH

- (~100-150kw ~ 250krpm)

Energy Storage

- 4MJ Max

MGUK

- (~70-100kw)

- Motor Generator Unit Kinetic
- Connected to wheels, recovers braking energy and provides torque

- Motor Generator Unit Heat
- Connected to turbo-shaft, recovers waste heat and provides amps

Unlimited

- 4MJ/lap Max

- 2MJ/lap Max

© Ricardo plc 2014
So what does the mainstream European passenger car powertrain of the future look like?

- **Boosted Engine**
 - Variable Geometry Turbo
 - 12 Volt Elec System
 - Stop/Start
 - 5% Bio fuel mix

- **Downsized 40% v Today**
 - Turbo/Supercharged
 - 48 Volt Motor/Generator
 - Low Cost Energy Store
 - 10% biofuel mix

- **Downsized 70% v Today**
 - Dual Stage Boost
 - Integrated Electric Machine
 - Thermolectric Generator
 - 25% biofuel mix

- **Extreme Downsizing**
 - Advanced Cycle/Heat Rec.
 - Integrated Systems
 - Advanced Thermoelectrics
 - Synthetic fuel mix

Vehicle Weight Reduction:
- **Base**
- **-9%**
- **-21%**
- **-34%**
- **-41%**
- **-45%**
- **-48%**

Potential NEDC CO₂ Capability

Source: Ricardo Analysis
Thank you for your attention

Respect · Integrity · Creativity & Innovation · Passion