High Performance Electrical Machines for Electrical Propulsion

an insight into recent and future trends for the role of electrical machines in electrical propulsion

Chris Gerada
Professor of Electrical Machines
PEMC Research Group
chris.gerada@nottingham.ac.uk
PEMC Group

- 120 strong team dedicated to research in electrical machines, drives and power electronics.
- Over £23M current grants and >2000m² laboratory space making it one of the largest groups of its kind worldwide
- Application areas:
 - Transport: automotive, marine and MEA
 - Industrial Drives
 - Renewable generation
Contents

• State of the art and recent trends in electrical machines.

• Electrical machines for future power trains.

• Enabling technologies

• Case Studies
 • Case Study 1 – high speed machine with SiC converter
 • Case Study 2 - high torque machine
 • Case Study 3 – high power density machine
E-Machines: Current Status

- Permanent magnet machines are the benchmark technology for both for direct drive and high speed motors.
- Tendency to move away from rare earth materials.
 - Copper rotor IM
 - SR and variants
- Higher frequency
- More automation and innovation in manufacturing processes
- Better understanding of losses, component degradation and life time models (and how to design for it).

Radial PM Machine
- 30kW, 1300rpm
- Hybrid Traction

High Speed Induction Machine
- 10kW, 50000rpm
- E-Turbo
Electrical Machines for Future Powertrains

- Significant increase in Torque/Power density – 30kw/litre for entire drive?
- Increased Functionality
- Increased integration (Functional and Physical)
- Increased modularity and scalability
- More standardisation of interfaces
- Enhanced efficiency
- Improved reliability, manufacturability and higher kw/(kg of rare earth)
Enabling Technologies

- Novel Machine Topologies
- Materials (soft & hard magnetic, insulation, conductors)
- Thermal management (thermal materials, cooling methodologies)
- Power electronics and control
- Manufacturing technology and processes
Advanced Materials

- Magnetic Materials
 - Lower losses
 - Higher thermal conduction
 - Cost reduction
- Thermal Materials
- Conductors and Insulators
• High frequency drives (high poles/high speed) will enable a significant improvement in drives power density.

• Drive integration (motor + PE + cooling)

• Attractive concept as allows component elimination and improves power density

• Modularity across platforms

• Advanced functionality in terms:
 • Self - awareness
 • Integrated AMB
 • Harmonic control
 • Multifunctionality
Novel Topologies

- High efficiency IM
- PM rotor + Stationary Field winding
- Field coil only used for starting (when efficiency is not an issue)
Health and Usage Monitoring

- Diagnostics and Prognostics

- Example of a fault detection when the insulation on one turn degrades.
Case Studies

• Case 1: High Speed Machine (120 krpm)

• Case 2: High Torque density machine (270kNm/m3)

• Case 3: High Power Density machine (33kW/litre)
CS1: High speed energy recovery

Engine electrification and waste heat recovery

- High speed an enabler for energy saving and power density
- Fuel efficiency demonstrated
- SPM machines easy option but…..

Combined Turbo Generator

600Vdc, 10kW, 80krpm
Water-cooled - CUMMINS

High Speed IM under test

600Vdc, 10kW, 80krpm
Water Cooled
CS1: Performance Limits

Fig. 21. Power-speed nodes and rpm√kW
• Case 1: High Speed Machine (120 krpm)

• Case 2: High Torque density machine (270kNm/m3)

• Case 3: High Power Density machine (33kW/litre)
CS2: High Torque Density Traction

• Surface PM with hallback arrays tend to give highest shear stress values as limit saturation and magnetic loading
Ways of enhancing torque density

- **Outer Rotor configuration** which has been shown to have higher torque density than the inner rotor counterpart

- **High pole number** with Single Layer concentrated winding - highest fundamental winding factor OR Double Layer concentrated winding

- **Unequal wound and unwound tooth widths** which has been shown to increase the fundamental winding factor

- **Halbach magnet arrangement** which increases the airgap flux density and consequently the torque capability.

- **High grade soft magnetic material**

- **Open slot design** (higher packing factor and lower armature induced saturation)
CS2: High Torque Density Traction

- Interleaving used to improve output torque and minimise passives
- Special thermal paths introduced to enhance heat transfer
- High saturation flux density material used to boost torque
CS2: High Torque Density Traction

- Outer rotor for effective integration and maximum torque
- Integration of electromagnetic clutch
- Advanced thermal management to minimise temperature rise.
- Peak torque of : 270kNm/m3
Case Studies

• Case 1 : High Speed Machine (120 krpm)

• Case 2 : High Torque density machine (270kNm/m3)

• Case 3 : High Power Density machine (33kW/litre)
CS3: High Power Density Machine

- Aim to achieve minimum drive-system weight through a functional integrative design considering:
 - PE/EM topology
 - Thermal Management
 - PE/EM design by utilising advanced materials
 - Advanced control
 - Advanced manufacturing

Diagram showing the machine design loop including electromechanical, mechanical, and thermal aspects, connected to power electronic converter design and control strategy.
Drive Study

- Different machine topologies considered including reluctance, PM and IM.
- A range of circuit topologies considered
- Si/SiC devices and high grade SiFe lams considered
<table>
<thead>
<tr>
<th>Description</th>
<th>IM</th>
<th>SRM</th>
<th>SPM</th>
<th>IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>21.93 Kg</td>
<td>27.9 kg</td>
<td>11.1 Kg</td>
<td>11.1 kg</td>
</tr>
<tr>
<td>OD</td>
<td>183 mm</td>
<td>192 mm</td>
<td>164 mm</td>
<td>164 mm</td>
</tr>
<tr>
<td>Axial length</td>
<td>106 mm</td>
<td>158.6 mm</td>
<td>80.2 mm</td>
<td>80.2 mm</td>
</tr>
<tr>
<td>Air gap</td>
<td>0.5 mm</td>
<td>0.5 mm</td>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Worst-case temperature</td>
<td>229 °C</td>
<td>250 °C</td>
<td>180 °C</td>
<td>190 °C</td>
</tr>
<tr>
<td>Eff @ full speed</td>
<td>96 %</td>
<td>91.8 %</td>
<td>94.3 %</td>
<td>96.1 %</td>
</tr>
</tbody>
</table>

- PM machines have better power density than SR and IM
- Ways of managing faults possible
- NOTE: the above are for approximately similar converter kva rating
Thermal Management

- Machine fluid cooled

- Power Converter – forced air cooled and thermally integrated with other SG integration
High Power Density Machine

Additive manufacturing

Low loss specially insulated windings

Low loss laminations

• Machine capability:
 • 16 kW/Kg @ 32krpm
 • 33 MW/m^3 or 33 kW/litre

3-Level NPC drive
Conclusions

• A marked improvement in power density is expected.

• Physical and Functional integration will play a key role in the drivetrain design

• Materials a key enabling technology

• Modularity and manufacturing key enablers in cost reduction

• PM likely to play a significant role but with better utilisation