Aftertreatment solutions for Tier4 and beyond

Dr Mikael Larsson
Heavy Duty Diesel Applications Manager Europe
Johnson Matthey
19th February 2014
Presentation Outline

• Introduction to Johnson Matthey
• Existing aftertreatment technologies (the “tool box”)
 • DOC
 • CSF
 • SCR
 • ASC
 • SCRF®
• Rationale for aftertreatment technology on non-road machinery
 • Legislation
 • Implications of “Stage IV/Tier 4 final” aftertreatment legislation in 2014
• Future trends for efficient and compact aftertreatment solutions including SCRF®
 • Next stage legislation
 • SCRT® vs. SCRF®
• Summary & Conclusions
Presentation Outline

- **Introduction to Johnson Matthey**
 - Existing aftertreatment technologies (the “tool box”)
 - DOC
 - CSF
 - SCR
 - ASC
 - SCRF®
 - Rationale for aftertreatment technology on non-road machinery
 - Legislation
 - Implications of “Stage IV/Tier 4 final” aftertreatment legislation in 2014
 - Future trends for efficient and compact aftertreatment solutions including SCRF®
 - Next stage legislation
 - SCRT® vs. SCRF®
- Summary & Conclusions
Johnson Matthey Overview

• A speciality chemicals company and a world leader in sustainable technologies

• Origins date back to 1817, floated 1942, FTSE 100 company since June 2002

• Market capitalisation of just under £6 billion

• £10.7 billion revenue and underlying profit before tax* of £382.9 million for year ended 31st March 2013

• Operations in over 30 countries with 11,000 employees

• Leading global market positions in all its major businesses
Divisional Structure

Emission Control Technologies
- Light Duty Catalysts
- Heavy Duty Catalysts
- Stationary Emissions Control

Process Technologies
- Chemicals
 - Chemical Technologies (DPT)
 - Syngas
 - Chemical Catalysts (inc. Formox)

Oil and Gas
- Refineries
- Purification
- Tracerco

Precious Metal Products
- Manufacturing
 - Noble Metals
 - Colour Technologies
 - Chemical Products

Fine Chemicals
- Services
 - Platinum Marketing and Distribution
 - Refining
- Manufacturing
 - Active Pharmaceutical Ingredient (API) Manufacturing
 - Catalysis and Chiral Technologies
 - Research Chemicals

New Businesses
- New Business Development
- Water
- Battery Technologies
- Fuel Cells
Emission Control Technologies Division

- Products to reduce emissions from cars, trucks, buses and other pollution sources
- Ensure legislated environmental limits are met
- Products fitted to about a third of all cars produced worldwide

- First autocatalyst produced in Royston, UK in 1974
- Since then, many millions of tonnes of pollutants prevented from reaching the atmosphere
- A major impact on improving air quality around the world
Emission Control Technologies
Global manufacturing and technology centres
Presentation Outline

• Introduction to Johnson Matthey
• Existing aftertreatment technologies (the “tool box”)
 • DOC
 • CSF
 • SCR
 • ASC
 • SCRF®
• Rationale for aftertreatment technology on non-road machinery
 • Legislation
 • Implications of “Stage IV/Tier 4 final” aftertreatment legislation in 2014
• Future trends for efficient and compact aftertreatment solutions including SCRF®
 • Next stage legislation
 • SCRT® vs. SCRF®
• Summary & Conclusions
Existing aftertreatment technologies (the “tool box”)

DOC
Diesel Oxidation Catalyst

Oxidation of hydrocarbons, carbon monoxide and some soot.
Also used in the regeneration of filter and to promote the low temperature activity of SCR systems.

CSF
Catalysed Soot Filter

Capture and combust soot (passive or active)

SCR
Selective Catalytic Reduction

Removes NOx by a selective reaction with ammonia.
Addition of Adblue (or DEF) needed.

ASC
Ammonia Slip Catalyst

Removes traces of ammonia after the SCR catalyst.
Existing aftertreatment technologies (the “tool box”)

- **DOC**: Diesel Oxidation Catalyst
- **CSF**: Catalysed Soot Filter
- **SCR**: Selective Catalytic Reduction
- **ASC**: Ammonia Slip Catalyst

CRT® or CCRT®
Existing aftertreatment technologies (the “tool box”)

- **DOC**
 Diesel Oxidation Catalyst

- **CSF**
 Catalysed Soot Filter

- **SCR**
 Selective Catalytic Reduction

- **ASC**
 Ammonia Slip Catalyst
SCRT® System Configuration

- **DOC – Diesel Oxidation Catalyst**
 - Removes CO and HC
 - Oxidises fuel to drive active filter regeneration
 - Converts some NO into NO₂

- **CSF – Catalysed Soot Filter**
 - Traps particulate matter (carbon)
 - For subsequent removal by NO₂ and / or O₂
 - Enables particle number (PN) compliance

- **SCR – Selective Catalytic Reduction**
 - Removes NOx via reaction with NH₃

- **ASC – Ammonia Slip Catalyst**
 - Removes any ammonia (NH₃) slip and converts it to (predominantly) nitrogen (N₂)
Existing aftertreatment technologies (the “tool box”)

- **DOC**
 Diesel Oxidation Catalyst

- **CSF**
 SCR coated filter

- **SCR**
 Selective Catalytic Reduction

- **ASC**
 Ammonia Slip Catalyst
Presentation Outline

- Introduction to Johnson Matthey
- Existing aftertreatment technologies (the “tool box”)
 - DOC
 - CSF
 - SCR
 - ASC
 - SCRF®
- Rationale for aftertreatment technology on non-road machinery
 - Legislation
 - Implications of “Stage IV/Tier 4 final” aftertreatment legislation in 2014
- Future trends for efficient and compact aftertreatment solutions including SCRF®
 - Next stage legislation
 - SCRT® vs. SCRF®
- Summary & Conclusions
On Road (EUVI, EPA10) vs Non Road Regulations

T4f has higher limits and no need for DPF on all engines.

<table>
<thead>
<tr>
<th></th>
<th>EU VI</th>
<th>EPA10</th>
<th>Stage IV Tier 4 final</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ (mg/kWh)</td>
<td>400</td>
<td>270</td>
<td>400</td>
</tr>
<tr>
<td>PM (mg/kWh)</td>
<td>10</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>PN (#/kWh)</td>
<td>6 x 10^{11} (WHTC)</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td></td>
<td>8 x 10^{11} (WHSC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycles</td>
<td>WHSC & WHTC</td>
<td>FTP & SET</td>
<td>NRTC & NRSC</td>
</tr>
<tr>
<td>Introduction</td>
<td>31/12/13</td>
<td>1/1/10</td>
<td>1/1/14 (130-560kW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/1/15 (56-130kW)</td>
</tr>
</tbody>
</table>
Aftertreatment solution for “Stage IV/Tier 4 final”

• For stage ”Stage 3B/Tier 4 interim” various solutions has been used
 • No aftertreatment
 • Oxidation catalyst
 • CSF
 • SCR

• From ”Stage IV/Tier 4 final” three options will be widely used:
Aftertreatment solution for “Stage IV/Tier 4 final”

- **SCR** (Selective Catalytic Reduction)
- **ASC** (Ammonia Slip Catalyst)
- **DOC** (Diesel Oxidation Catalyst)
- **CSF** (Catalysed Soot Filter)
- **ASC** (Ammonia Slip Catalyst)
- **SCR** (Selective Catalytic Reduction)
Aftertreatment solution for “Stage IV/Tier 4 final”

- **SCR**
 Selective Catalytic Reduction

- **ASC**
 Ammonia Slip Catalyst

High NOx, low PM engines. Low or no EGR
NOx conversion > 98% for some systems

Pictures from Bauma 2013
Aftertreatment solution for “Stage IV/Tier 4 final”

DOC for beneficial for low temperature activity.

Picture from Bauma 2013
Aftertreatment solution for “Stage IV/Tier 4 final”

Pictures from Bauma 2013

Filter also as optional fit (e.g. Swiss market)

DOC
Diesel Oxidation Catalyst

CSF
Catalysed Soot Filter

SCR
Selective Catalytic Reduction

ASC
Ammonia Slip Catalyst
Presentation Outline

• Introduction to Johnson Matthey
• Existing aftertreatment technologies (the “tool box”)
 • DOC
 • CSF
 • SCR
 • ASC
 • SCRF®
• Rationale for aftertreatment technology on non-road machinery
 • Legislation
 • Implications of “Stage IV/Tier 4 final” aftertreatment legislation in 2014
• Future trends for efficient and compact aftertreatment solutions including SCRF®
 • Next stage legislation
 • SCRT® vs. SCRF®
• Summary & Conclusions
Stage V options

- JM assumes that Stage V will be filter forcing

- Possible system solutions
 - SCRT®
 - SCRF®
JM SCRF® market progress and key challenges

- SCRF® systems in series production for LDD applications
- JM can coat filters with all SCR catalyst types and reach high NOx conversion
- JM is working with OEMs towards future legislation targets
Typical HDD target = Maximum passive NO₂ based filter regeneration

SCRF® Challenge = Competition for NO₂

SCRF® Challenge: PM control
Influence of SCR function on soot removal

\[
\begin{align*}
\text{NO}_2 & \quad \rightarrow \quad \text{NH}_3 \\
\rightarrow & \quad \text{Soot} \quad \rightarrow \quad \text{Oxidation of soot} \quad \text{SLOW} \\
& \quad \rightarrow \quad \text{SCR reaction} \quad \text{FAST}
\end{align*}
\]
SCRF® options

Full passive soot regeneration

No passive soot regeneration
SCRF® options

Full passive soot regeneration

Effect on performance

Temperature

- **Cu SCRF® system**
 - High thermal durability required
 - Similar to passenger car system
 - Very compact system
 - Very good low temperature performance

- No passive soot regeneration

Very good low temperature performance

Very compact system

High thermal durability required

Similar to passenger car system
SCRF® system evaluation (NEDC)
SCRF® system can warm up faster than underfloor SCR system
SCRF® options

Full passive soot regeneration

Ageing

Temperature

DOC → SCRF® → SCR/ASC

Cu SCRF® system
High thermal durability required
Similar to passenger car system
Very compact system
Very good low temperature performance

No passive soot regeneration
Ageing of DOC + Cu SCRF®
Engine Ageing Profile

- Active regeneration: 30 min
- 600°C
- 2 WHTC, 1 h
- 200-350°C
- 2 WHTC, 1 h
Ageing of DOC + Cu SCRF®
NOx conversion before and after ageing

Cycle repeated 347 times ➔ Total 520 h and 173 h at 600°C
SCRF® options

Full passive soot regeneration
- **Cu or V SCRF®** system (Fe high T)
- Low PGM levels
- Lower thermal stress
- High overall SCR NOx conversion
- Good fuel economy

Cu SCRF® system
- High thermal durability required
- Similar to passenger car system
- Very compact system
- Very good low temperature performance

Passive soot regeneration

Temperature
SCRF® simulation results
Impact of temperature and NO₂/NOx

![Graph showing SCRF® soot loading (g/l) over time (h) at 350°C with high NO₂ level.](image)
SCRF® simulation results
Impact of temperature and NO$_2$/NOx
SCRF® simulation results
Impact of temperature and NO₂/NOx
SCRF® simulation results
Soot burn rate vs. temperature (soot burn after 1 h)
SCRF® options

Full passive soot regeneration
- Cu or V SCRF® system (Fe high T)
 - Low PGM levels
 - Lower thermal stress
 - High overall SCR NOx conversion
 - Good fuel economy

No passive soot regeneration
- Cu SCRF® system
 - High thermal durability required
 - Similar to passenger car system
 - Very compact system
 - Very good low temperature performance

Temperature

NOx/PM ratio
Passive soot oxidation with urea injection in WHTC

Impact of NOx/PM on passive soot oxidation

Engine with lower NOx and higher PM (EGR)
No balance point

Engine with high NOx and low PM (no EGR)
Typical CRT behaviour
SCRF® options

- **Urea injection**
 - Full passive soot regeneration
 - Cu or V SCRF® system (Fe high T)
 - Low PGM levels
 - Lower thermal stress
 - High overall SCR NOx conversion
 - Good fuel economy

- **NOx/PM ratio**

- **Temperature**
 - Cu SCRF® system
 - High thermal durability required
 - Similar to passenger car system
 - Very compact system
 - Very good low temperature performance

DOC

SCRF®

SCR/ASC
Influence of SCR on Passive Regeneration

- Actual BP with urea
- Expected BP without urea

- 20min, No urea injection
- 10 min, ANR = 1.1
SCRF® options

Full passive soot regeneration
- Cu or V SCRF® system (Fe high T)
- Low PGM levels
- Lower thermal stress
- High overall SCR NOx conversion
- Good fuel economy

No passive soot regeneration
- Cu SCRF® system
- High thermal durability required
- Similar to passenger car system
- Very compact system
- Very good low temperature performance

Diagrams
- Urea injection
- NOx/PM ratio
- Temperature
- Optimal coating
SCRF® with reference and optimised coating
NOx conversion at ANR=1.1
Passive soot oxidation with urea injection
Repeated NRTC, ANR = 1.0

Ave T = 315°C

Typical CRT behaviour
Passive soot oxidation with urea injection
Repeated NRTC, ANR = 1.0

![Graph showing the comparison between Optimised coating and Reference coating over the Number of NRTC (#)]
Passive soot oxidation with urea injection
Repeated NRTC, ANR = 1.0

Soot loading after repeating NRTC for 144 h
Reference coating = 6.4 g/l
Optimised coating = 2.6 g/l

Repeat for 150 h
SCRF® options

Full passive soot regeneration
- Cu or V SCRF® system (Fe high T)
- Low PGM levels
- Lower thermal stress
- High overall SCR NOx conversion
- Good fuel economy

DOC → SCRF® → SCR/ASC

Cu SCRF® system
- High thermal durability required
- Similar to passenger car system
- Very compact system
- Very good low temperature performance

Urea injection

NOx/PM ratio

Temperature

Optimal coating
Presentation Outline

• Introduction to Johnson Matthey
• Existing aftertreatment technologies (the “tool box”)
 • DOC
 • CSF
 • SCR
 • ASC
 • SCRF®
• Rationale for aftertreatment technology on non-road machinery
 • Legislation
 • Implications of “Stage IV/Tier 4 final” aftertreatment legislation in 2014
• Future trends for efficient and compact aftertreatment solutions including SCRF®
 • Next stage legislation
 • SCRT® vs. SCRF®
• Summary & Conclusions
Summary & Conclusions

- Aftertreatment systems for Stage IV/Tier 4 final will all consist of SCR systems sometimes combined with DOC and CSF (56 – 560 kW).

- For next stage, filter expected to be needed to meet PN regulation.

- Fuel economy & packaging requirements → Highly optimised systems & high SCR NO\textsubscript{X} conversion

- JM SCRF® technology offers system volume reduction whilst maintaining high NO\textsubscript{X} conversion and good passive regeneration
Thank you for your attention

Acknowledgements
Dr Kaneshalingam Arulraj, Dr Gudmund Smedler, Anna Thorén and Dr Andy Walker